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Abstract

This paper describes a method of simulating a Markov chain for

the purpose of estimating functions of the chain and functions of

associated semi-Markov processes. In particular, special attention is

devoted to the estimation of the probability density function of first

passage time from, say, state a to state b. Rotation sampling is used

to achieve variances of estimators of order O(AIT, where k is the

number of replications, which compares with 0(1/k) when independently

sampled replications are used. Since both independent and rotation sampling

have computation time complexity 0(k), the relative advantage of rotation

sampling is clear as k The paper presents two examples to illustrate

the method.
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'Introduction

Consider a positive recurrent aperiodic Markov chain with state space

S (0,l ,... ,n) and transition probability matrix pn= II pijl1 where

Pij denotes the probability of moving from state i to state j in one

step for ij E S . Let sij denote the frequency of one-step transitions

from i to j during a first passage from state a to state b a,b E S

2and let s denote a lx(n+l) vector with sij in column n(i-1) + j

Also let p(s;a,b) denote the probability of observing the frequency

vector s during a first passage.

The need to know p(s;a,b) arises in many areas of applied probability

and operations research. For example, consider a semi-Markov process with

Markov chain n and holding time probability density function (p.d.f.)

f. (t) on [0,-) for one-step transitions from i to j ij c S . Let

f ij(t~s) denote the s-fold convolution of fii (t) with itself. Then the

semi-Markov process has first passage time p.d.f.

g(t;a,b) = p(j;a,b) f(tIk) (1)

where f(tIj) denotes the convolution of the p.d.fs. fii (tsij) for all

i,j c S such that sit > 0

Although one can write down systems of equations to represent (1), it is

difficult to solve these systems. In particular, it is difficult to derive

computationally convenient expressions for p(s;a,b) The purpose of

this paper is to propose a method for estimating p(j;a,b) by means

of a superefficient Monte Carlo sampling method and then showing how these

estimates can be used to estimate an important class of reward functions, of

which (1) is a special case. In k independent Monte Carlo replications or

sampling experiments, the variances of estimators usually are 0(1/k). The
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sampling plan proposed here leads to variances of order 0(1/k2 ). Since the

computation time complexity of the proposed scheme is O(k), which also holds

for independent replications, the proposed sampling plan is termed superefficient

The sampling plans use a special case of the antithetic variate method

(Hammersley and Handscomb 1964) called rotation sampling which is described

in detail in Fishman and Huang (1980). The technique has already been

applied to the direct simulation of Markov chains in Fishman (1981a, 1981b,

1982a). The present paper extends the technique to the estimation of the

more complex probabilities p(s;a,b).

Section I describes the procedure in detail and Section 2 describes

how it applies for Gamma distributed holding times. Section 3 presents two

examples, one of which is the estimation of the p.d.f. of busy time for the

M/M/l queueing model. The results of this example are compared with the

theoretical solution in Cox and Smith (1961, p. 148). These examples use

the MCHAIN FORTRAN subprogram (Fishman 1982b) which enables one to simulate

k replications of the chain in parallel, using rotation sampling.

For consistency with the earlier work in Fishman (1981a, 1981b, 1982a),

we add several modelling details. We assume that there exists a positive

integer 6 < (n-l)/2 such that

Pij= 0 for li-ij > 6
and

.min(n,i+6) pi= 1.(mi-- j=max(0,i-6) Pj = I

Also, let si denote the total number of states that have positive transition

probabilities from state j and let {mi; r = 1,...,s } denote the ordered
jrJ

* - sequence (mr < mjr+l; r = l,...,s. -1) of the s. states to which entry can

occur from state J. Then one has the representation

-...........................ii: ::2 Z.. ....
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pjm.r > 0 r =

(2)

r=l p "mjr

6 > max (Imjl- ii, Imis.-i1) j= 0,1.

The value of this alternative, .but equivalent, representation

becomes apparent when actually generating sample paths by simulation on

K a computer. See Fishman (1982b).

1. Simulation of a Markov Chain

*Reward Functions

Let I denote the set of all one-step (ij) transition pairs with p..> 0.
1J

Suppose one wants to use simulation to study the behavior of the chain

during an interval that begins with exit from state a and ends with entry to

state b where a,b e S. Let

N. = frequency of transitions of type i during
i first passage on an arbitrarily selected (3a)

sample runand

A(Jl,...,jWe = reward received during first passage for
it' 1l,..,r transitions of types l,...,r (3b)

respectively.

A type denotes all the one-step (ij) transition pairs which lead

to the exact same reward. Here there are r distinct types. This notation

proves convenient later in reducing the dimensionality of the estimation

problem.

On k replications the sample mean reward is

Rk - L= A(N I)...,Nt);!) (4)Rk -k t- I " ' r '~( )

where the superscript (t) denotes replication t. The reward function A can

assume many alternative forms. For example, if

=A(Jlg .. 9 ; ) jr as  (5)r ""., " s
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for given Q (a,,... ar) R k is linear in S ... 9S r where
SNe) (6)

This case has been studied in detail from the point of view of simulation in

Fishman (1981a, 1981b, 1982a). As a second example, consider a semi-Markov

process with Markov chain En and continuous holding time p.d.fs.

flq..' rfor the r types of transitions in 1. Let

g1(tfj) =fi(t) *fj(t) *..*fi(t) 0 < t < - (7)

denote the J-fold convolution (j > 0) of f. .Then for given N.=j

i Is l...,sr the p.d.f. of first passage time from a to b is

A~l" 'r~o 9&=1(tlj) * 2(tlj 2) g** r( t1jr,) (8)

where the convolution includes only those gjas for which j i > 0 and 0 t

Aggregation Across Repltications

Although (4) proves useful for computation of R ks an alternative

representation considerably simplifies the derivation of results. Let
r

K. ik fl.6(N~~- ) (9)

where

6(x) = 1 ifx= 0
= 0 otherwise,

so that one can write (4) as

jR ~ l,..,j r=O K0 l'"...'r AI',.,je

Note that

AK m j O K 1 ** r
b jl+j. .Sj ~ l...j r
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is the number of replications that enter b on step m. More importantly, note

that K.l . k is an unbiased estimator of p(s;a,b) in (1) with
. ."-". requ ncy ectr s -{ l " "J

frequency vector s = (jl,..,j) in the case in which there are r (n + 1)2

distinct types of transitions. Although we hereafter discuss the properties

of Rk it should be recognized that a reward function

A(j I .,jr;e) =r 6(j1 - ji)
-'" r ) =J1 =l*

specializes the analysis to the estimation of p(s;a,b) where s =

Serial Simulation

Presumably, the objective of simulation is to perform k replications

sufficient to achieve an acceptable accuracy for Rk as an estimate of ERk.

In the case of k independent replications in series, with a#b, one can ensure

that each replication begins with an exit from a and ends with a first entry

into b by replacing {Pbj; j=0,,...,n) by Pba=l, and Pbs=0 for V s~a.

For the case a=b there is no need to modify the probabilities. In the

independent case one has var Rk=O(I/k) and computation time complexity 0(k).

Para lie l Simulation

To speed up the convergence rate of var Rk we turn to parallel

simulation using rotation sampling. Hereafter, a prime superscript denotes

4parallel rotation sampling. Consider k replications each beginning with an

exit from state a and set Pbb=1 and Pbs=O for V s#b. If a=b this modification

of {Pbs} should be performed after the first transition. This modification

makes the chain absorbing with transient states jib, where Sb = S-b,

and absorbing state b. Let Tm denote the set of transient states with at

least one resident replication at the end of step m and let K m denote theJ

4 number of such replications in state JeTm . Let {Ujm; jET denote a sequence
o dm m

of i.l.d. random variables uniformly distributed on [0,1) and define for
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i~l,••,jm

Vijm = Ujm + (i-l)/Kjm if U m<l-(i-)lK jm

= Ujm + (i-l)/K' m-1 otherwise. (10)

Also define

qs= Js=O p ses

and (11)

q. =0 -

Then at step m+l replication i in state j goes to state s if

qj,s < Vijm < qjs • Since qjn=1, a destination is guaranteed.

Note that although Vljm,.•..VKjmJm are each uniformly distributed on

[O,1), they are not independent. Therefore, the sample path of each replication

" from a to b has the correct probability law, but the k paths are not independent.

The assignment in (10) is called rotation sampling and produces a clear benefit

in simulation. For a reward function as in (5), the use of (4) leads to

2var R< O((In k/k) 2 ) n g

and (12)

var R_ 0((In k)4/k2) n

which improve on 0(1/k) for independent replications. Moreover,

for (5) one can show that the computation time complexity is O(ln k) for n <

and 0((In k) ) for n -. This last result follows from a more compact

sampling scheme, than that in (10), that can be used when there is no need

to keep track of the distinct sample paths on each replication. See

.Flshman (1981a, 1981b, 1982a). For the more general reward function (4),

keeping sample path data to compute {N (t);'jcl} for Z=l,...k is necessary and

therefore the computation time complexity is O(k)

,°... -- - . - . . . . . .
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One additional result is of importance. Let Kt. denote the number of

replications that move from i to j on step mn. Then it is shown in Fishman (1981a)

that as k--

var Kti =0(1) 1,jeS m=1,2.........(13)

We use this result next when bounding var R'for the general reward function (4).

Observe that by analogy with (9)
A I~ m ~ K1. i ~ K'. (14)

AK 0b ibm
i l s ..* * r r

so that for given mand k-0

r r j, j r

cov(K~ K' ) (15)
1iJCS b in' jbm

Then it can be shown that as k

coy (Kj I K' 0(0) (16)
1 r" r l..J

so that our estimate K' K' /k of p(s;a,b) with s=(.. ar s ***' ... 9jr1'' ar
variance 0(1/k). Proof of (16) follows from Proposition 1.

Proposition 1. Let X1,...,x denote random variables with

var X C1 2 c(Z)

* cy X1  x) 0j(z) i~j i,j=l,...,t

and define

p.,JI~
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with

varY = 2 Z) j--1,...,t

if

21im (z)- C < V j,
k-.4i

then

lim z) < constant V i. (17)

Proof. Observe that

2 (z) 2Ct(z)at(z) = (Z) - wti~-I 2tz

where

Ct(z) = cov (Xt, Y t>l

Since

iCt(z) < at(z) Wtl(Z),

one has

2 ~2 2
a t(Z) -2 a t(Z) Wtil(z) +W tl (Z) - wt(k)

([tlz) - Wtilz) - wt(z)] [ot(z) - Wt l(Z)+ wt(z)] 0

so that

Wt-(z) - wt(z) at(z) < t-l(z) + Wt(z) (18)

Taking the limit as z- gives (17). The result in (16) follows directly.

We now derive var R' for the important case

....',r= A(j1""'jr; .) < constant (19a)

and

A(J 8....,Jr;) L 0 V jl,'"",'Jr" (19b)

r r
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Suppose that a transition of type ieI has the Gamma p.d.f.

f-t. , a.> (24)1.'- it =1'i- 1 I

r (ai) 0< t

denoted by G(ai, Xi). Let us also assume that all transition pairs (ij)

with the same p.d.f. are regarded as one type in I and that x < ...<

For an arbitrary replication with N. transitions of type i, the corresponding

total holding time has the Gamma distribution G(ti Ni, Xi) with p.d.f.

a Ni a.N1 -1 A t
"i gi(tlNi)= > 1iiXir(acN 1) ail N 1, Xi > 0,

:" 0 <_ t < (25)

Then the estimated first passage time p.d.f. is

R '(t) = ~ j K I- a 'r 2ak" 'J =  Kl"' r g . (tlil$ ...'Jr) (26a)

where

* 1g(tj -,.-.,r) = g1(tljl) *...* gr(tlJr) (26b)

and the convolution is taken only over those types i for which j, > 0.

In practice, it is more convenient to compute Rk(t) fromk

R'(t) = 1k g(tjNl(t),...,Nr(t)) (27)

which is algebraically equivalent to (26a). Note that the bample frequencies (9)

for the parallel simulation, need not be computed when (27) is used. However,

the computation of g(tiN( ( ,Nr( ) remains a difficult one when

Al,."' 'Ar are unequal. By using the Taylor series expansion of e , one

. can write (27) equivalently as

• " --'.'- , " .>iL• . . * . .. .- " -- - . ....................-.......... ,
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Proposition 2. Let the reward function A satisfy (19a) and (19b). Then

var R 0(1/k 2) (20)

Proof. Let B=sup var K Since these variances areJl" 'Jr Jl""'Jr"

bounded, clearly

var -. A(jl"... 'r 2 B/k2

(21)

< 0(/k2).

We now show that the result (20) applies for the case of the first

passage time p.d.f. in (8). Observe that one can write

l ZI' Jr=O ; t) =ij,--,r" r' (22)

h(t) * h2 (t) *...* hr(t)

where h. is the renewal density function

h'- h (t) -- 0=-0 gi(tfj)  o t < -(23)

and
~~~~gi(tiO)= 0 il .. r

Since each of the renewal densities can be bounded from above, it is clear

that for te [0,-) (22) is also bounded, thus establishing (20).

2. Gamma Distributed Holding Times

Although our estimator of p( ,;a,b) based on rotation sampling has

a clear advantage over an estimator based on independent replications,

computational problems remain in using either estimator to estimate the

first passage time p.d.f. in (1). In this section we describe and illustrate

how these problems can be overcome for the common case of Gamma holdinq times.



g(tIN,... Nr) 
s-i

=0.. sio ["l S pa.i I I g gs(tIM s + 1s-l )  (28)

where

s = max (i: N. > 0),1

Io0

and for j =1,...,s

lj = l j~ l + i

M. = -J=l mNm '

pijI_) = 6(j) if Nj=

_- M + I.+ ,
ir(M +l ) Mj + lj-l(l-wj)ij if N >0

and

J - = min(i: i > j, N. > 0).3

More concisely, (28) is equivalent to

g(ttN19...,)N)= q5  (I)gtM + sl (29)!.i:>'!~ ~ ~ 9(Il''r - Is-l= 0 s-1 (Ir-l) 9s(tIMs + Is-1) (9

where

q1 (Ii) = pl(i10) (30)

I.i qj(lj = nI -0 p(IljZ-llj-l)qj-l(Ij-I ) j=21,...,s-l.
I

Finally (28) has the equivalent form

g(tlNI,...,N r) = s .1(O) + xi=l (31)

t r(MS )  + s

4':A
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Expression (31) is exact and can be used in (27) with N.) replacing N i

i = l,...,r to compute an estimate of the p.d.f. Note that the term in

brackets in (31) is eventually a decreasing function of j for given t

This fact enables one to truncate the summation on j at a point where the

remainder is relatively incidental.

3. Examples

Consider an M/M/l queueing model with arrival rate X and service rate w.

Suppose one wants to estimate the p.d.f. of the busy period. Cox and

Smith (1961, p. 148) give this p.d.f. as

g(t) ell(2t V) 0 < t < (32)

-

-

where I1 denotes the Bessel function of imaginary argument and first order.

In this example, a=b=O, n=- and r=l, since all holding time distributions

from states i>O are exponential with identical rate x+w. If N is the total

number of transitions on an arbitrarily selected replication, excluding

the initial transition from state 0, then

(+)N tN-1el (+~
A(Nt) = g(tjN) =(+w) t(- e3(3+))t

r(N)

and the sample mean based on parallel simulation is

R (t) =1k (A+)N(Z) tN(Z) e-(A+W)t

r(N(Z))

l KI (x +e (34)
Ij=1 j+l r(J)

where

7. -
S= (N(Z )-j).II J =I
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Experimental Deaign

We distinguish between mZ oepticatonz and maoJeptta..onA..

In particular, each of L independent macroreplications of the simulation

contains k parallel microreplications that use (10). The L independent data

blocks enable us to estimate var R(t) for each value of k considered. The

global factor levels are x=0.9, w=l and t=0.5i; j=l,...,l0. Fnr these, L=100

macroreplications were run for six experiments with k 27+j microreplications

on experiments j=l,...,6 . The macroreplications were used to estimate

var R'(t) for each t and k considered. Also, for these A,w and t's,

L=1000 macroreplications were run each for k=l microreplication to get a

baseline estimate of var R(t) , the variance without rotation sampling.

Table 1 shows g(t) from (32) and Ri56 (t) for comparative purposes.

Insert Table 1 about here.

To measure variance reduction we use the ratio

var R'(t)

k var RI(t)

Our earlier results indicate that this quantity is linear in k as k-4.

Now when assessing variance reduction for the estimation of a function, it

* should be noted that the variance reductions for all 10 values of t in

Table 1 need not be identical for each k . Therefore for each k we

plotted the minimal and maximal V Is in Fig. 1, noting that all remaining

variance reductions lie between them. In general, the graphs agree with

theory. Moreover, we observed that for fixed k the V 's decreased with

k

Insert Figure 1 about here.

U,
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decreasing coefficients of variations computed for the estimates derived in

the baseline case of independent replications. This result is reassuring

for it indicates that the benefits of rotation sampling are most apparent

precisely where needed, namely where the larger coefficients of variation

arise.

Our second example illustrates the estimation technique based on (31).

It uses the same Markov chain as in example I but now with X=0.5, w=l

and holding time distributions G(I,xm) m=l,...,4 . Table 2 lists the

transition types. The objective was to estimate the first passage time

Insert Table 2 about here.

for a=b=O at times t=O.lj j=l,...,40 . For these parameters, L=1O0

macroreplications were run for nine experiments with k =21+j microreplications

on experiment j=l,...,9 . Also, L=lO00 macroreplications were run each with

* k=l micrereplication to get a baseline estimate of var Rl(t) Figure 2

shows the graphs of minimal and maximal variance reduction Vk versus k on

. logarithmic scales. Again the graphs essentially agree with theory. For each k

the same relationship between variance reduction and coefficients of variation

were observed as in example 1.

4. Conclusions

This paper demonstrates how one can estimate by a superefficient

method the probability of observing sl.. .,sr transitions of types l,...,r

during a first passage from state a to state b in a positive recurrent

aperiodic Markov chain with state space S = (Ol,...,n) . It then shows how

these results can be used to estimate a class of mean reward functions of which

,.-. . -.,-
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first passage time p.d.fs. are a special case. Section 2 specializes the

analysis to the case of Gamma holding times, showing how one derives expression

(31) which is convenient for numerical calculation. Section 3 demonstrates

the technique by two examples.

In order to implement the proposals of this paper, one needs a package

that generates the transition frequencies (N i j c S) L=l,...,klj
for k parallel replications based on rotation sampling. The MCHAIN FORTRAN

program in Fishman (1982b) will generate these data.
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Table 1

Results for Example 1

A=.9 ,w=l ,nz- ,and L=100

t .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5

g(t) .4319 .2276 .1399 .0955 .0701 .0542 .0434 .0358 .0302 .0258

R 5 (t .4320 .2278 .1399 .0956 .0702 .0543 .0435 .0359 .0302 .0258

Table 2

Transition Types for Example 2

typ transition pairs xm

1 (0,1) 0.5

2 (1,0). (1,2), (2,1) 1.5

3 (2.3), (3,2), (3,4), (4,3) 2.0

4 (01j) j=i-1, W~; i=5,6, ... 3.0

...........
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